Quantitative vibrational imaging by hyperspectral stimulated Raman scattering microscopy and multivariate curve resolution analysis.

نویسندگان

  • Delong Zhang
  • Ping Wang
  • Mikhail N Slipchenko
  • Dor Ben-Amotz
  • Andrew M Weiner
  • Ji-Xin Cheng
چکیده

Spectroscopic imaging has been an increasingly critical approach for unveiling specific molecules in biological environments. Toward this goal, we demonstrate hyperspectral stimulated Raman loss (SRL) imaging by intrapulse spectral scanning through a femtosecond pulse shaper. The hyperspectral stack of SRL images is further analyzed by a multivariate curve resolution (MCR) method to reconstruct quantitative concentration images for each individual component and retrieve the corresponding vibrational Raman spectra. Using these methods, we demonstrate quantitative mapping of dimethyl sulfoxide concentration in aqueous solutions and in fat tissue. Moreover, MCR is performed on SRL images of breast cancer cells to generate maps of principal chemical components along with their respective vibrational spectra. These results show the great capability and potential of hyperspectral SRL microscopy for quantitative imaging of complicated biomolecule mixtures through resolving overlapped Raman bands.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microsecond Scale Vibrational Spectroscopic Imaging by Multiplex Stimulated Raman Scattering Microscopy.

Real-time vibrational spectroscopic imaging is desired for monitoring cellular states and cellular processes in a label-free manner. Raman spectroscopic imaging of highly dynamic systems is inhibited by relatively slow spectral acquisition on millisecond to second scale. Here, we report microsecond scale vibrational spectroscopic imaging by lock-in free parallel detection of spectrally disperse...

متن کامل

Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated Raman scattering microscopy.

A finger on the pulse: Current molecular analysis of cells and tissues routinely relies on separation, enrichment, and subsequent measurements by various assays. Now, a platform of hyperspectral stimulated Raman scattering microscopy has been developed for the fast, quantitative, and label-free imaging of biomolecules in intact tissues using spectroscopic fingerprints as the contrast mechanism.

متن کامل

Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers.

Raman microscopy is a quantitative, label-free, and noninvasive optical imaging technique for studying inhomogeneous systems. However, the feebleness of Raman scattering significantly limits the use of Raman microscopy to low time resolutions and primarily static samples. Recent developments in narrowband stimulated Raman scattering (SRS) microscopy have significantly increased the acquisition ...

متن کامل

Sparse sampling for fast hyperspectral coherent anti-Stokes Raman scattering imaging.

We demonstrate a method to increase the acquisition speed in coherent anti-Stokes Raman scattering (CARS) hyperspectral imaging while retaining the relevant spectral information. The method first determines the important spectral components of a sample from a hyper-spectral image over a small number of spatial points but a large number of spectral points covering the accessible spectral range a...

متن کامل

Fast Vibrational Imaging of Single Cells and Tissues by Stimulated Raman Scattering Microscopy

Traditionally, molecules are analyzed in a test tube. Taking biochemistry as an example, the majority of our knowledge about cellular content comes from analysis of fixed cells or tissue homogenates using tools such as immunoblotting and liquid chromatography-mass spectrometry. These tools can indicate the presence of molecules but do not provide information on their location or interaction wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 85 1  شماره 

صفحات  -

تاریخ انتشار 2013